MMP-9 inhibition suppresses wear debris-induced inflammatory osteolysis through downregulation of RANK/RANKL in a murine osteolysis model.

نویسندگان

  • Desheng Chen
  • Xianlong Zhang
  • Yongyuan Guo
  • Sifeng Shi
  • Xin Mao
  • Xiaoyun Pan
  • Tao Cheng
چکیده

Wear debris-induced osteolysis in periprosthetic tissue with aseptic loosening is a serious problem after total joint arthroplasty. Matrix metalloproteinase-9 (MMP-9) is expressed in osteoclast cells that surround loosening peri-implant tissue, but the molecular mechanism of MMP-9 action in wear debris-induced osteolysis remains ambiguous. We used a murine osteolysis model to examine the hypothesis that administration of an MMP-9 inhibitor reduces the expression of receptor activator of nuclear factor-κB (RANK) and nuclear factor-κB ligand (RANKL) and, thereby, suppressesdebris-induced inflammatory osteolysis. Experiments were performed in 3 groups of 15 mice: a control, a titanium (Ti) and a Ti plus tetracycline group. To provoke inflammatory osteolysis, calvarial bone was implanted from syngeneic littermates, followed by injection of Ti particles into established air pouches for all groups except the control. Tetracycline was administered daily by intraperitoneal (i.p.) injection, and PBS was administered by i.p. injection to the control and Ti groups. Mice were sacrificed 14 days after bone-Ti implantation. Pouch membranes with the intact bone implants were collected for histological and molecular analysis. Tetracycline had minimum effect on the expression of MMP-9 and tumor necrosis factor-α (TNF-α) but it decreased gene activation and inhibited the expression of RANK and RANKL, thereby inhibiting Ti-particle-induced inflammatory osteolysis. Tetracycline decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive cells in the pouch tissues. Our results in the murine osteolysis model suggest that through the downregulation of RANK/RANKL, tetracycline significantly inhibits debris-induced inflammatory osteolysis. Its use in clinical practice may help prevent complications experienced by patients who have undergone total joint arthroplasty.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wear particles enhance autophagy through up-regulation of CD147 to promote osteoclastogenesis

Objective(s): The study aimed to uncover the underlying mechanism linking wear particles to osteoclast differentiation, and we explored the effect of titanium particles of different sizes on CD147 expression and autophagy in macrophages. Materials and Methods: Effects of titanium particles on CD147 and RANKL mRNA were detected by QPCR; protein level of CD147 and Beclin-1 were detected by Wester...

متن کامل

ER Stress Mediates TiAl6V4 Particle-Induced Peri-Implant Osteolysis by Promoting RANKL Expression in Fibroblasts

Wear particle-induced osteolysis is a major cause of aseptic loosening, which is one of the most common reasons for total hip arthroplasty (THA) failure. Previous studies have shown that the synovial fibroblasts present in the periprosthetic membrane are important targets of wear debris during osteolysis. However, the interaction mechanisms between the wear debris and fibroblasts remain largely...

متن کامل

GF109203X attenuates RANKL-induced osteoclastogenesis and suppresses osteolysis in a mouse model

Aseptic loosening after joint replacement is primarily caused by wear particle-induced osteolysis, which shortens the life of the prosthesis. Research shows that there are many osteolytic cytokines around prostheses that are loosened due to wear particles. Among these, receptor activator of nuclear factor κB ligand (RANKL) is the only factor that can directly stimulate the formation and functio...

متن کامل

Titanium particle-induced osteogenic inhibition and bone destruction are mediated by the GSK-3β/β-catenin signal pathway

Wear debris-induced osteogenic inhibition and bone destruction are critical in the initiation of peri-prosthetic osteolysis. However, the molecular mechanism underlying this phenomenon is poorly understood. In this study, we analyzed the involvement of the GSK-3β/β-catenin signal pathway, which is important for bone formation in this pathological condition. We established a titanium (Ti) partic...

متن کامل

Role of the Toll-like receptor pathway in the recognition of orthopedic implant wear-debris particles.

The inflammatory response to prosthetic implant-derived wear particles is the primary cause of bone loss and aseptic loosening of implants, but the mechanisms by which macrophages recognize and respond to particles remain unknown. Studies of innate immunity demonstrate that Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 30 6  شماره 

صفحات  -

تاریخ انتشار 2012